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Re-Engineering a Relational Dé'fabase System to Produce a
Prototype Object-Oriented Geophysical Database System

Julia Hodges
Shekar Ramanathan
Susan Bridges

Abstract

This document provides a description of (1) the design and development of a
prototype object-oriented geophysical database system, and (2) the development of a re-
engineering process for mapping from an existing relational database to an object-oriented
database. Although it is widely recognized that the object-oriented approach has many
advantages over traditional relational technology for scientific databases, one cannot ignore
the large investments that have been made in existing relational databases. The re-
engineering process described in this document provides a systematic method for (1)
mapping from an existing relational schema to an object-oriented schema and for (2)

mapping the actual data from the relational database into an object-oriented database.

Introduction

It is now widely recognized that an object-oriented database paradigm is more
suitable than the relational model for scientific, engineering, and geographic information
systems (Bertino and Martino 1991; Bhargava 1992). There are already many relational
databasé systems in use, however, and the owners of these systems are not likely to choose
to throw away the existing databases in order to move to object-oriented database
technology. Therefore there is a need for a re-engineering process that can map an existing
relational schema onto an object-oriented schema in a systematic way, then map the actual
data from the relational database into an object-oriented database. In this paper, we
describe our work in defining such a re-engineering process. We also describe how we
have used the portions of this process that we have already defined to build a prototype
object-oriented geophysical database from an existing relational database.

We begin with a summary of the advantages for scientific applications offered by
the object-oriented database paradigm. We then describe the different kinds of data to be
stored in the prototype object-oriented database system. Next we discuss the design of the
object-oriented schema for the portion of the database which has been the focus of most of
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the work done so far (i.e., the grid data). We also describe the re-engineering process that

was used to load the grid data by mapping from the existing relational grid data to the
object-oriented grid data. Then we describe the preliminary work that has been done in the
development of an object-oriented representation for other types of geophysical data stored
in the relational database system. Finally we provide a summary and conclusions.

Motivation for Object-Oriented Approach
Blaha, Premerlani, and Rumbaugh (1988) provided four criteria for judging the
“merit” of a database design:

1. performance: Does the structure of the database promote
the availability of the data?; can users quickly retrieve
and update relevant data?;

2. integrity: To what extent does the database guarantee
that correct data is stored? (the definition of “correct”
depends on the application);

3. understandability: How coherent is the structure of the
database to end users, other database architects, and the
original designers after a period of time?;

4. extensibility: How easily can the database be extended to
new applications without disrupting ongoing work?

Engineering and scientific applications may be characterized by the need for
handling complex data. That is, such an application may be required to deal with real-
world objects which are structurally complex. An acoustic image, for example consists of
rectangular cells called zexels (Reed and Hussong 1989). Each texel, in turn, consists of a
number of pixels. Object-oriented database systems allow an image to be described as a
single complex entity, whereas relational systems require that the image be decomposed
(or, in relational terminology, normalized) into multiple tables, with the different tables
describing the components of an image. The end result is that the semantics of the entity
being modeled are scattered across multiple relations rather than being packaged into a
single object. The object-oriented approach allows a user to access the complex object as a
whole as well as to access individual components of the object. Thus, for complex data,
the object-oriented model meets the first and third criteria given above better than the
relational model does.

The referential integrity constraints that must be enforced in relational database
systems are the result of certain limitations of the relational model:

« the requirement that complex entities must be decomposed into a

collection of two-dimensional tables, and



« the fact that relationships in a rqlational database are represented
implicitly (such as through the ‘use of foreign keys) rather than

explicitly.
Consider, for example, an application in which we wish to represent students’ class
schedules. A relational schema for this application is shown in Figure 1. The attributes
that form the primary key for each relation are underlined.

STUDENT (ID, name, classification)
CLASS (course_number, course_name, time, place)
ENROLLED (ID, course_number)

Figure 1. Relational Schema for Classes

What are the referential integrity constraints with which we must be concerned in
this application? First, we must be sure that we do not enroll a student in'a class that is not
being offered. Second, we must be sure that we do not enroll a non-existent student in a
class. Thus, any time that we store a new tuple in the ENROLLED relation, we must make
sure that the student ID number already exists in the STUDENT relation and the course
number already exists in the CLASS relation. (There are other integrity constraints that we
would want to maintain, such as ensuring that no student is enrolled in two different
classes at the same time of day, but we will not consider those here.) If the relational
DBMS that we are using does not provide a mechanism for defining referential integrity
constraints, then we must rely on each application program to check properly for any
integrity violations.

The entity-relationship (ER) model offers some advantages over the relational
model for capturing the semantics (or meaning) of the data in a database. For example, the
ER model, originally defined by Chen (1976), makes a distinction between entities and
relationships. In an ER design for our previous example (Figure 1), STUDENT and
CLASS would be entities, whereas ENROLLED would be a relationship. In the relational
model, relationships are represented using either foreign keys (for one-to-many
relationships) or as separate relations (for many-to-many relationships). Thus the
distinction between an entity and a relationship is blurred in the relational model. In
addition, the ER model makes the mappings between entities involved in a relationship

(one-to-one, one-to-many, or many-to-many) explicit, whereas this information is merely
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implied in a relational design. There are no commercial DBMSs based on the ER model,

however, so that the ER model is frequently used as a design tool, with the resulting design
being transformed into a relational schema which is then implemented using a relational
DBMS. The popularity of the ER model as a design tool is reflected in the use of its
concepts in many database design tools and the fact that there has been an annual
international conference on the ER approach for more than ten years (Elmasri and Navathe
1994).

Relational database management systems (DBMSs) are attractive for a number of
reasons (Blaha, Premerlani, and Rumbaugh 1988). Relational tables provide a very simple
way of representing data.. The relational model is theoretically sound and well understood.
Unlike the ER model, it is supported by a number of commercial DBMSs. Yetitis the
simplicity of the relational model that makes it unsuitable for many complex applications.
The requirement that relational data must fit into a two-dimensional table is too restrictive
for representing more complex data. The ER model provides a slightly more abstract
representation than the relational model (e.g., relationships are expressed explicitly in the
ER model). But it does not provide a “substructure for entities and relationships” (Blaha,
Premerlani, and Rumbaugh 1988). For example, the ER model does not support entities
which may have subcomponents that are also entities, each of which may have
subcomponents, etc.

The object-oriented paradigm supports the modeling of complex data and
interrelationships “in a natural way” (Bertino and Martino 1991). That is, the model
supports the definition of objects which have a complex structure, groupings of objects into
classes, and the arrangement of object classes into an inheritance hierarchy. Not only does
the model support the structural definition of an object, but “also the modeling of object
behaviors and dynamic constraints” (Bertino and Martino 1991). The traditional relational
model has no mechanisms for defining complex objects as single entities, for explicitly
defining relationships among entities, or for defining the behavior of an object as a part of
the definition of the object.

Object-oriented database management systems support schema evolution (the
changing of the definition of the database) because many scientific and engineering
applications are dynamic and need this capability. Relational database management systems
provide some limited schema evolution capabilities such as adding new relations and
adding new attributes to existing relations, but they do not support changes as complex as
those found in many object-oriented database management systems (Bertino and Martino
1991).
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Object-oriented database management systems also support versions (different

states of the same object). As with schema évolution, the support of versions has been
dictated by the needs of the applications. Bertino and Martino (1991) have described the
need for version support as being “inherent in applications that are exploratory and
evolutionary.” For example, consider the processing of hull-mounted wide-swath
bathymetric sonar data being done at NAVOCEANO at the Stennis Space Center. The
scientists working with the imagery data need to derive mosaics and ocean bottom
classifications, validate bathymetry data, and correlate the acoustic data with other sensor
data. The acoustic imagery data can complement bathymetry data in providing geologists
and engineers with ocean bottom topography. The acoustic imagery data provides
information about the “microroughness, texture, and backscatter. properties of the ocean
floor” (Lingsch and Robinson 1992). Scientists may use several different techniques to
derive mosaics from image data. The mosaics derived by different mechanisms could be
represented as different versions. This will support testing of new algorithms for
processing the image data in order to determine which ones reveal the features needed to
validate new models. The support for schema evolution and versions gives the object-
oriented DBMSs the ability to meet the fourth criterion givcn above in a more powerful
manner than relational DBMSs.

The choice of which database model to use is dependent on the characteristics of the
application which the database system is intended to model. The relational model was
designed to support traditional data processing applications such as inventory control and
order processing. The analysis of large quantities of scientific data, however, requires
capabilities not provided in the relational model. As described by DeSanti and Gomsi
(1994), 'such applications “are very dynamic and their database schema is usually very
complex,” and they require “the ability to handle the creation and evolution of schema of
arbitrary complexity without a lot of programmer intervention.” This is exactly the type of
application for which object-oriented database systems are most useful.

Scientists at the Mississippi State University Center for Air Sea Technology
(CAST), which is located at the Stennis Space Center, expressed an interest in pursuing the
possibility of using object-oriented technology for storing large quantities of geophysical
data currently stored in a relational database. In 1993, we evaluated several object-oriented
database management systems for CAST and recommended that they purchase ObjectStore
(Ramanathan and Hodges 1994a). Since then, we have worked closely with the CAST
scientists in the design of an object-oriented schema for the data and in the development of

a windows-based user interface for the resulting database system.




Description of the Geophysical Data

To demonstrate the advantages of the object-oriented approach for a geophysical
database, we designed and implemented an object-oriented database system that contains a
portion of the data found in the NEONS database system. NEONS (Naval Environmental
Operational Nowcasting Silstem) is a comprehensive system that includes software and
procedures to support the “(a)nalysis of environmental data” (Jurkevics 1992). The
NEONS database is a relational database that consists of four realms: primary, associative,
descriptive, and geographic. The primary realm contains environmental data of four types:
image data, grid data, latitude-latitude-time (llt) data, and line data. The associative realm
contains information about the primary data such as time coverage, storage format,
resolution, and grid geometry. The descriptive realm contains “descriptions of satellites,

k2l

sensors, channels, orbital elements, grid geometries, and projections.” The geographic
realm “contains time-invariant data about the earth’s geography” such as “coastlines, rivers,
political boundaries, topography, bathymetry, and land-surface type” (J urkevics 1992).

All of the primary data in the NEONS database is stored as packed bitstreams in
order to save space. This introduces additional overhead for the packing and unpacking of
the data, but the NEONS database designers thought that the decreased data volume would
improve the overall 1/O performance (Jurkevics 1992). The image data is packed into
bitstreams, then stored in external files. The other three types of primary data are packed
into bitstreams and then stored in relational tables.

The image data consists of multi-band images and overlays. These images can be
in either satellite or registered coordinates. The images can be of any size, number of
bands, and resolution. The grid data consists of the output produced by atmospheric and
oceanographic analytical models, user-defined products, and gridded climatology data. Llt
data represents measurements or reports taken at a particular point (latitude and longitude)
at a particular time. The 11t data is the most varied of the different types of primary data. It
consists of “conventional environmental reports, earth-located satellite scene stations, and
point climatology data” (Jurkevics 1992). Line data consists of a series of point
observations (i.e., llt data) along a curved line.

For our prototype system, which we call ObjNEONS, we began by focusing on the
orid data in the primary realm. The primary grid data is actual data values for various
parameters (such as salinity or sea-surface temperature) at different grid points. We
designed and developed an object-oriented schema for the grid data, then loaded the gnid
database by writing routines to map from the NEONS grid data to the object-oriented grid
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database by writing routines to map from the NEONS grid data to the object-oriented grid

data. We also designed and implemented a wmdows—based interface for the object-oriented
grid database. We have done some preliminary work on the image data and lit data
portions of the object-oriented database. Most of our discussion in this document will be
about the grid data portion of the database, although we do provide a brief description of
the work done on the image and 11t data.

We decided to store the primary data in our prototype systcm without packing the
data. Eventually, we would like to conduct some performance experiments to compare the
NEONS relational database and our object-oriented database in terms of the amount of
storage required, the response time required for various operations, and the I/O time

required for various operations.

Design of the Object-Oriented Grid Database Schema

In the design of the ObjNEONS database, we wanted to “exploit all the features
provided by the object-oriented model to provide a view that represents the real world as
much as possible” (Ramanathan and Hodges 1994b). We first had to familiarize ourselves
with the grid data and what it represented to the scientists. We did this by producing an ER
diagram for the relational grid data. The process for producing an ER model from a
relational schema is called reverse engineering. It is the reverse of a well-known
process for producing a relational schema from an ER diagram (described by Elmasri and
Navathe (1994)). We then augmented the resulting ER diagram with domain information
in order to produce an object-oriented schema, a-process called forward engineering.
The entire process of mapping from relational to ER to object-oriented is called re-
engineering the database. This process, which is described later in this document, is
summarized in Figure 2.

Initially, we provided an object-oriented view of the existing relational database
(Ramanathan 1994) and developed a windows-based interface that allowed access to the
data through this view (Wu 1993). This provided the CAST scientists with the opportunity
to try out an object-oriented approach before investing in a new DBMS. Following an
evaluation of commercial object-oriented DBMSs (Ramanathan and Hodges 1994a), CAST
purchased ObjectStore. We then began the implementation of the object-oriented grid
database system, including a graphical user interface called Grid Data Browser (Koduri
1994).
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The Re-Engineering Process: Mapping from Relational to Object-Oriented

Our primary motivation for re-engineering an existing relational database rather than
developing an object-oriented database “from scratch” is to be able to make use of the
existing relational database to populate the object-oriented database. A number of
approaches to this process have been reported in the literature. Markowitz, in collaboration
with Shoshani (1989) and Makowsky (1990), proposed a process for reverse engineering a
relational database schema to an extended entity-relationship (EER) structure. This is
accomplished by considering key and inclusion dependencies defined in the relational
schema. However, their approach assumes that the relational schema is well-designed,
something which is often not true in practice.

Chiang, Barron, and Storey (1994) have defined a knowledge-based approach to
extracting EER structures from a relational database. Premerlani and Blaha (1994) have
proposed an approach for extracting an object-oriented database schema from a relational
schema. Their approach makes use of a number of tools, including OMTool (an editor that
produces object diagrams using OMT, or object-modeling technique, notation), SQL,
AWK scripts, and various other programs and macros. In addition, they make use of
manual analysis of the data. Based on their case studies', they have concluded that “[a]
purely mechanical approach to reverse engineering of databases does not consider the
transformations designers often apply in moving from design to implementation.” Thus
they think that the best approach is to use a “flexible, interactive approach” that provides the
designer with “a suite of flexible, loosely coupled tools.”

As with the other approaches, our re-engineering process is concerned in part with
mapping from a relational schema to a schema represented by some other model. We have
chosen to map to an object-oriented database schema for the reasons provided in an earlier
section. Unlike other approaches that have been described in the literature, however, we
have not limited our re-engineering process to schema transformation. We have taken a
more extensive view of the process by including the mapping of the actual data from a
relational database to an object-oriented database.

We shall first discuss the process of mapping from a relational schema to an object-
oriented schema. After we have described the schema mapping process, we shall discuss
the data mapping process, during which the data from a relational database is mapped to an

object-oriented database.



. Relational-to-ER
Relational > Mapping
(Reverse Engineering)

ER schema

ER-to-Object-Oriented
— Mapping
(Forward Engineering)

Domain
Information

Object-oriented
schema

Figure 2. Mapping a Relational Schema
to an Object-Oriented Schema

The_Schema Mapping Process

We used an ER schema as an intermediate representation during the process of
mapping from a relational schema to an object-oriented schema. This was a convenient
way of familiarizing ourselves with the contents and semantics of the grid portion of the
NEONS database. We found this part of the process, which is called reverse engineering,
to be most helpful because it gave us a better set of questions to ask the CAST scientists
when we interviewed them about the semantics of the data. Once this part of the process
was done, we then mapped the resulting ER schema to an object-oriented schema using a

forward engineering process.
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Reverse Engjnf_:qﬁng:'From a Relational §chenf2i‘t to an ER Schema

As stated earlier, the reverse engineering process is conceptually the reverse of a
well-known technique for producing a relational schema from an ER schema (Elmasri and
Navathe 1994). In the relational model, both entities and relationships are represented as
relations. So we had to examine each relation to determine if it represented an entity or a
relationship. Those relations which contained no foreign keys were interpreted as
representing entities. The presence of foreign keys in the relations helped us to establish
the many-to-many (N:M) and one-to-many (1:N) relationships among the entities.

In this process, we had to be sure that the relationships implied in the relational
database schema were explicitly represented in the ER diagram. For example, the
appearance of one table’s primary key as a foreign key in another table implied a
relationship between the two entities represented by the tables. We determined the
cardinality of the relationships from the documentation available for the NEONS database
(Jurkevics 1992) and from inspection of the data stored in the database (Ramanathan and
Koduri 1995). When inferring the cardinality of a relationship through inspection of the
data, we asked the CAST scientists to confirm our conclusi;)n to ensure that the presence of
a certain cardinality was not merely incidental.

The ER diagram was refined through consultation with the CAST scientists. It is
certainly possible that more than one reasonable ER diagram could have been produced
through “alternate interpretations of the structure and data” in the relational database
(Premerlani and Blaha 1994). Once we felt that we had a reasonable ER diagram, we used
it as a starting point for producing the object-oriented schema. From the ER diagram, we

were able to define a preliminary set of object classes and their relationships.

Forward Engineering: From an ER Schema to an Object-Oriented Schema

All of the entities in the ER schema were represented as object classes in the object-
oriented schema. The interpretation of the relationships in the ER schema was not as
straightforward. The ER model is limited in its representation of relationships. In the ER
model, a relationship is a mapping between entity types, with the cardinality of the mapping
being 1:1, 1:N, or N:M. This is the extent of the semantics of the relationship that can be
represented in an ER relationship. In an object-oriented model, however, there may be a
number of different types of relationships. For example, there may be associations (similar
to the ER concept of a relationship), aggregations (special associations that represent “a-
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part-of”’ relationships), and generalizations (superclass-subclass inheritance hierarchy

relationships) (Rumbaugh et al. 1991).

We first identified .generalizations. Premerlani and Blaha (1994) have suggested
several clues that may be indicative of a generalization relationship in a relational schema.
Some simple adaptation makes these clues also useful for ER schemas. For example, the
following patterns may be géneralization relationships:

« ER relationships consisting entirely of foreign keys from various
entities

. entities in which many attributes from other entities have been
replicated

We then identified those associations that represented a-part-of relationships. We
represented those as aggregations. The ability to recognize aggregations requires “‘semantic
understanding” (Premerlani and Blaha 1994), so we relied upon the CAST scientists for
additional domain information. This information was obtained from multiple interviews
with various scientists at CAST. Methods for deriving object-oriented schemas from ER
diagrams cannot recognize such relationships without the benefit of domain information
(Ramanathan and Koduri 1995). '

By talking to scientists at CAST about the semantics of the data and how the data is
used, we were able to incorporate additional semantic information into the design of the
object-oriented schema. As a result, we were able to identify additional object classes for
the grid data that would not have been recognized by the relational-to-ER-to-object-oriented
process otherwise. A shortcoming of this part of the process is that the extraction of the
additional domain information is not an automated process.

We also obtained some of the semantic information we needed about the primary
grid data from the descriptive and associative realms. For example, the descriptive realm
contains information about generic attribute names such as geom_parm_I. The
interpretation of the attribute geom_parm_1 is different for different types of grid geometry
projections. The associative realm contains information about the primary data such as the
numerical model that was used, the grid geometry that was used, and where the
measurements were made. Thus our object-oriented approach to representing the primary
grid data in the NEONS database was actually a unifying approach that made use of the
appropriate information from the descriptive and associative realms as well as the primary
realm. The portion of the NEONS database made available to us for this project contained

two primary realm relations, two associative realm relations, and eight descriptive realm
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relations. The object-oriented schema produced from the relational-to-ER-to-object-

oriented mapping ig shown in Figure 3.

T'he Data Mapping Process

The data mapping process is the process of mapping the data from the NEONS
database (where it is stored as relational tuples) to the object-oriented database (where it is
stored as complex objects). One way of accomplishing this is by providing an object-
oriented view of the existing relational data, which is what we first did as an initial
investigation into the feasibility of using an object-oriented approach (Ramanathan 1994).
However, this approach, of providing an object-oriented wrapper around the existing
relational database has two major disadvantages. First, it requires that the object-oriented
view must be modified whenever the relational schema is modified. Second, it represents
an additional expense at run-time due to the need to dynamically map the relational tuples to
objects. Another way of accomplishing the data mapping is to actually port the data from
the relational database into an object-oriented database that is managed by an object-oriented
DBMS. This approach has the advantage of being a one-time operation. Unfortunately,
most object-oriented DBMSs do not provide data loéding routines because of the
complexity of the data caused by embedded objects, relationships, inheritance hierarchies,
etc. (Wiener and Naughton 1994).

We have populated the ObjNEONS database using a simple approach to the data
porting problem (Ramanathan and Koduri 1995). This was done using C++ and
embedded SQL. ObjectStore is tightly integrated with the C++ programming language,
providing extensions for the handling of persistent data. Some of the features of
ObjectStore that were used for the data porting were inverses, collections, and queries.
Inverses provides a mechanism for automatically maintaining referential integrity between
objects. Collections is a class library used to manage sets of objects. Queries is a feature
that provides for the retrieval of objects from a collection based on some predicate (i.e.,
some condition that evaluates to either true or false).

We provided an application programming interface called Grid Data Browser that
provides users with a graphical interface to the grid data (Koduri 1994; Ramanathan and
Koduri 1995). The interface “resides primarily in the methods attached to the class
definitions of the ObjNEONS objects” (Ramanathan and Koduri 1995). The main
components of the Grid Data Browser are shown in Figure 4. Grid Data Browser was
implemented using the Motif toolkit and runs on X Windows. The front-end component
sends user requests to InfoManager, which handles the interactions with the
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ObjNEONS database. InfoManager executes the user query, then returns the result to the

front-end component.” All of the database operations are encapsulated in InfoManager, with
the front-end of the user interface being completely decoupled from these operations. This
makes it possible for the user interface to be adapted for use with other databases by
modifying only the back-end component, leaving the front-end component unchanged.

Preliminary Work with Other Data Types

With the advice of the CAST scientists, we chose to work on the grid data portion
of the NEONS database first. However, we have done some preliminary work on two of
the other data types: the latitude-longitude-time (lit) data and the image data. Using the re-
engineering process, we produced object models for the 1lt data and the image data, then
loaded some sample data of each type into a corresponding object-oriented database. That
is, we created a prototype object-oriented 11t database and a prototype object-oriented image
database.

The 11t data consists of a set of data points representing readings taken along a line
or curve. The data represents a variety of information such as conventional environmental
reports, point climatology data, and earth-located satellite scene stations (Jurkevics 1992).
In our initial prototype object-oriented 11t database, we included only 15 of the different
kinds of 1t data in our object model and actually loaded the data for only three of these. We
also developed a simple user interface to demonstrate that the Iit data had been correctly
stored and could easily be retrieved from the object-oriented database (Kalluri 1995).

* Unlike the other data types stored in NEONS, image data is stored as flat files of
binary data rather than being stored in relational tables. In our prototype object-oriented
image database, we have stored not only satellite images, but also information about the
satellites themselves (orbits, sensors, channels, etc.). Thus we have stored not only the
raw images, but also descriptive information about them, in a manner similar to what we
had done with the grid data. We also developed a simple interface to demonstrate that the
images had been correctly stored and could easily be retrieved from the object-oriented
database (Cheng 1995).

Summary and Conclusions

In this document, we have described the development of a prototype object-oriented
geophysical database through the re-engineering of an existing relational database. The re-
engineering process allowed us not only to map the relational schema to an object-oriented

schema, but also to map the relational data to objects. We have described this process and
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its application to the grid data portion of the NEONS relational database in some detail. We

have also briefly described the preliminary work that has been done in re-engineering the 11t

data and image data portions of NEONS.

Our re-engineering process requires that we augment the syntactic information

about the structure of the relational database with semantic information about the data that is

provided by domain experts. Whereas many database re-engineering efforts address only

schema mapping, our process includes both schema mapping and data mapping. It is our

opinion that it is important to include data mapping in this process because of the large

quantities of data available in existing databases.
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We intend to address ways in which the semantic information may be formalized so
that the process of incorporating this information into the object-oriented design is a well-
defined, systematic one rather than the informal approach used in current schema mapping
efforts. We also intend to develop database loading algorithms that will allow one to port
data from a relational database to an object-oriented database. Wiener and Naughton
(1994) have done some work in the development of routines for the bulk loading of data
into an object-oriented database. Their methods are intended to handle different types of
associations, but they do not address inheritance hierarchies. Also, the source of the data
for the object-oriented database is simply data files rather than data already stored in some
other database such as a relational database. We plan to modify their approach so that it
will handle inheritance hierarchies and be able to load an object-oriented database from a

relational database.
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